5 Ways to Get Started with Container Optimization for Automation and Cost Savings

By Andy Richman

As container technology moves past something new and into the mainstream, users are concerned about the next step: container optimization. In our conversations with customers and potential customers, containers have been a consistent topic for the last few years, typically focused on production environments. However, recent conversations have become more focused, specifically on how to optimize container spending.

Kubernetes – which seems to be the most popular of container services among our customer base – does allow for a number of ways to optimize for costs and to maximize performance. We have identified five specific opportunities ripe for container optimization. Take a look at these within your own environments.

1) Rightsize Your Pods

Kubernetes Pods are the smallest deployable computing units in the Kubernetes container environment. It is a common practice to use a standard template for limits and requests for pod provisioning. If requests describe the minimal requirement for the CPU and memory for a pod to be scheduled on a node, the limits describe the max amount of CPU and memory the pod can consume on that specific node. Typically engineers set the initial limits by using a rule of thumb, such as doubling it just to be on the safe side and then planning to change it later once they have some data to look at. As with many things in life, “later” rarely happens. As a result, the footprint of the cluster inflates over time, exceeding the actual demand for the services running inside the cluster.

Just think about it, if every pod is over-provisioned by 50% and the cluster is always is 80% full, that means that 40% of the cluster capacity is allocated but not used, or simply put — wasted.

2) Turn Off Idle Pods

Many standard instances/VMs and databases in non-production environments are idle outside of working hours and can be turned off or “parked”. The same case exists for Pods, which in non-production environments can and should be scheduled in the same way.

3) Rightsize Your Nodes

Too many worker nodes are the wrong size and type. Kubernetes permits co-allocating the applications on the same nodes, which can dramatically reduce the cloud bill. Yet, incorrectly sized instances and volumes can lead to the inflation of the cost of Kubernetes clusters. Rightsizing could save up to 50% (particularly if no previous action has been taken to rightsize your nodes.)

Another thing to consider is that smaller nodes have a higher relative OS footprint and increase management overhead. The smaller the node, the higher the number of stranded resources. Stranded resources are CPU or memory which are idle, yet cannot be allocated to any of the pods, because the pods which are to be scheduled are too big to claim it. If a pod’s sizes are close to the size of the node (server) the percentage of the resources which are stranded gets higher.

4) Consider Storage Opportunities

Out of the box, containers lose their data when they restart. This is fine for stateless components but becomes an issue when a persistent …read more

Read more here:: B2CMarketingInsider

Leave a Reply

Your email address will not be published. Required fields are marked *

CommentLuv badge